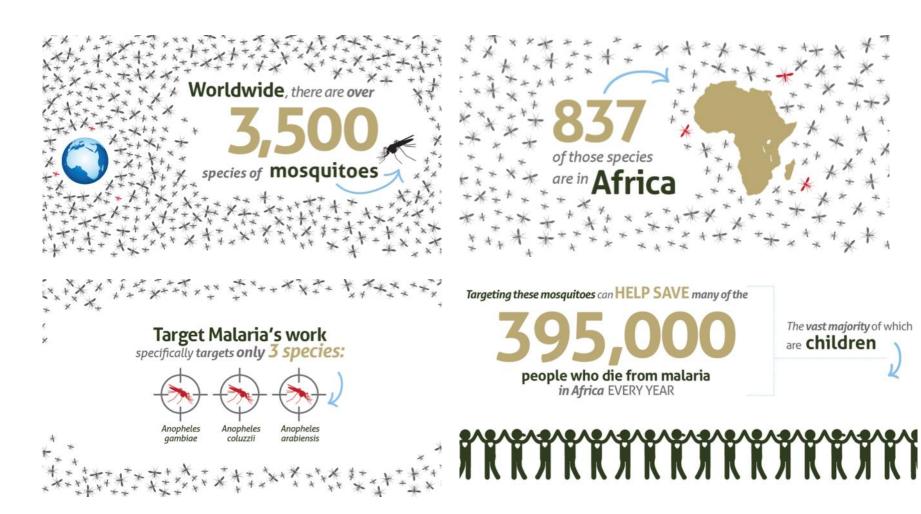


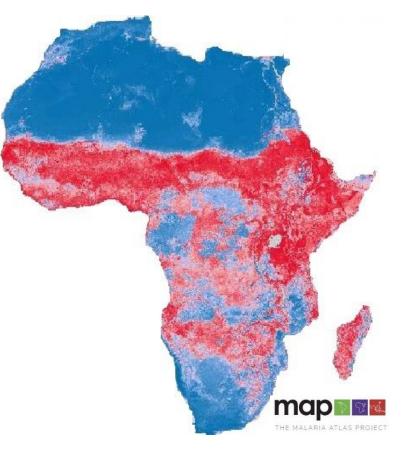
Risk assessment frameworks for gene drive: A Target Malaria perspective

Geoff Turner, Imperial College London

West Africa Animal Biotechnology Workshop July 23-25, 2018 Dakar Senegal

Who Are We? A Vector Control Research Alliance




Malaria vector control- A targeted approach

Target Malaria mission

- We will develop and share new, cost-effective and sustainable genetic technologies to modify mosquitoes and reduce malaria transmission
 - Complementary to existing methods
- Values
 - Excellence
 - Co-development
 - Evidence-driven
 - Open and accountable

Anopheles gambiae species complex distribution

Program partners in Africa

Dr Abdoulaye Diabate IRSS Bobo Dioulasso

Dr Mamadou Coulibaly MRTC Bamako

Dr Jonathan Kayondo UVRI Entebbe

Ghana "Ecological Observatory" project

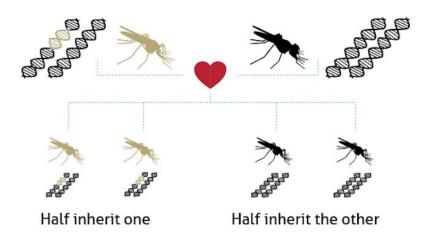
- Typical *Anopheles gambiae* habitat
- 4 year study-impacts of suppression
- Ecological community relationships
 - Larval niche and food web mapping
 - Plant/pollinator interactions
 - Microorganisms to large organisms
- DNA barcoding
- Methods development and transfer

Built on three pillars

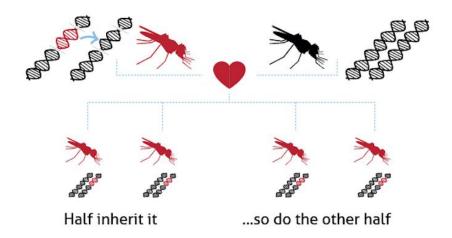
Stakeholder engagement

Science- Phased technology development

Self-limiting – No gene drive

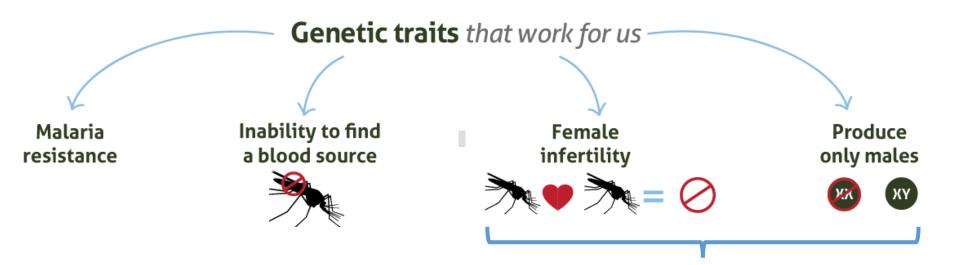

Self-sustaining- Gene drive

- No intended impact on malaria
- No offspring
- No significant impact on mosquito population
- Male biased ratio in offspring
- Potential transient impact on mosquito population
- Targeting a long-term and sustainable impact on malaria-mosquito numbers



Science: What is gene drive?

Most **genes** are **inherited** half the time



Driving genes are always inherited

Science: What is gene drive?

Population suppression

Stakeholder engagement; multi-layered

International

Africa regional

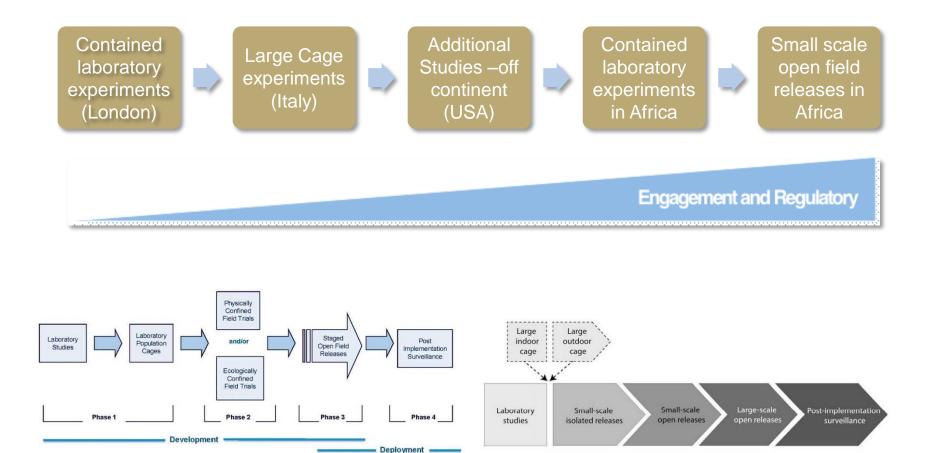
National

Regional

Local

Different stakeholder groups

Different levels of acceptance needed


Different tactics and degrees of involvement

Regulatory-Pathway for evaluation

WHO, 2014

James et al, 2018

FIGURE 3. Pathway to deployment of gene drive mosquitoes.

WHO Vector Control Advisory Group

- Assess the public health value of new vector control product classes
- Staged technical framework with progressive evidence requirements

- Epidemiology
- Economics
- Technology dev't pathway
- Manufacturability sustainability
- User compliance/acceptability

- Delivery and feasibility of implementation
- Regulatory/safety/ethical and environmental impact
- Target product profile description
- Policy/Strategy

Project interaction/data requirements

VCAG/WHO evaluation

Developing the proof of concept

3 Review and assessment of public health value Policy
development
and product
evaluation

MPAC

Biosafety assessment - Precedent for GM insects

Self-limiting – No gene drive

Salud

CTNBio
de biossegurança

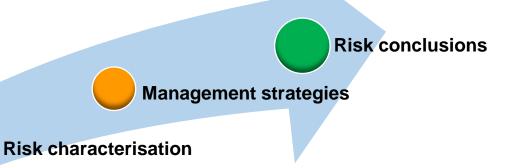
Commercial
scale

Scale

Signatura Surviva Sur

"Effectively" sterile

Ministry of Health, Welfare and Sport


Sterile Male

Female lethal/males survive

Male bias

Biosafety assessment approach

Hazard and exposure characterisation

Problem formulation

		LEVEL OF RISK			
LIKELIHOOD ASSESSMENT	Highly likely	Low	Moderate	High	High
	Likely	Low	Low	Moderate	High
	Unlikely	Negligible	Low	Moderate	Moderate
	Highly unlikely	Negligible	Negligible	Low	Moderate
		Marginal	Minor	Intermediate	Major
		CONSEQUENCE ASSESSMENT			

Australian Government, Department of Health and Ageing, Office of the Gene Technology Regulator. Risk Analysis Framework, 2013.

Technical guidance for risk assessment risk management

Self-Sustaining- Gene Drive

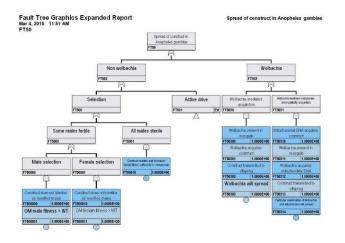
Intended to spread and persist

TIME

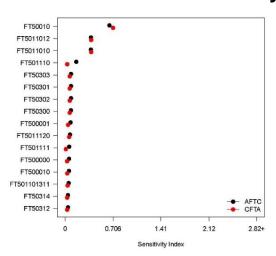
Emerging policy guidance

National academies of science

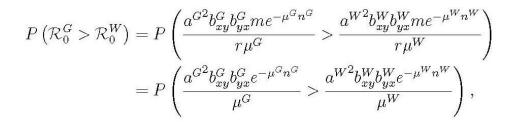
National / Regional policy


Emerging themes for risk assessment

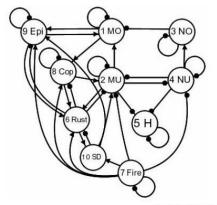
- Socio-economic impact assessment
- Ecological quantitative risk assessment



Tools for quantitative ecological risk assessment


Fault tree analysis*

Base event sensitivity*



Mathematical modelling*

* Hayes et al, 2015 - Risk Assessment for Controlling Mosquito Vectors with Engineered Nucleases: Sterile Male Construct, Final Report. CSIRO Biosecurity Flagship, Hobart, Australia

Signed digraphs**

^{**} Dambacher et al, 2007 - Qualitative modelling and Bayesian network analysis for risk-based biosecurity decision making in complex systems. Australian Centre of Excellence for Risk Analysis

Social, economic and public health impact assessment

Identification of key indicators

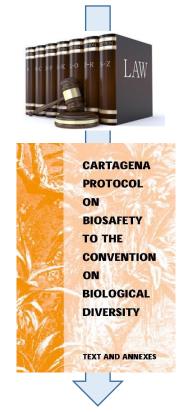
- -National legislation
- -International standards of best practice
- -Emerging guidance

Data collection and field work

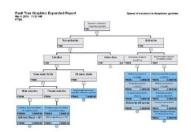
- -Publically available data
- -Semi-structured key informant interviews
- -Participatory activities
- -Village spatial and social organisation.

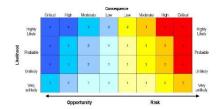
Outcomes

- -Potential for impact
- -Identification of benefits
- -Site suitability assessment
- -Identification of information gaps
- -Management options


Building a comprehensive impact assessment framework

Established tools and guidance- Risk assessment and management




International obligations and national laws

New tools for biosafety assessment -Quantitative

New areas of assessment-Socioeconomic

Emerging policy

- Global and national compliance
- Dynamic and responsive
- Accessible and transparent

Acknowledgements

"Target Malaria receives core funding from the Bill & Melinda Gates Foundation and from the Open Philanthropy Project Fund, an advised fund of Silicon Valley Community Foundation"

A Vector Control Research Alliance

Thank you